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Abstract

The problem of lateral instability of a viscoelastic in-plane loaded structure is considered
in terms of thermorheologically simple materials. As an example of a generally in-plane
loaded structure, we examine the simple column under axial load: Both cyclic loading is
considered (with constant or in-phase variable temperature excursions) as well as the case
of constant load in the presence of thermal gradients through the thickness of the structure.
The latter case involves a continuous movement of the neutral axis from the center to the
colder side and then back to the center.

In both cases, temperature has a very strong effect on the instability evolution, and un-
der in-phase thermal cycling the critical loads are reduced compared to those at constant
temperatures. The primary effect of thermal gradients beyond that of thermally-induced
rate accelerations is occasioned by the generation of an “initial imperfection” or “struc-
tural bowing.” Because the coefficient of thermal expansion tends to be large for many
polymeric materials, it may be necessary to take special care in lay-up design of composite
structures intended for use under compressive loads in high-temperature applications. Fi-
nally, the implications for the temperature sensitivities of composites to micro-instability
(fiber crimping) are also apparent from the results delineated here.

1. Introduction

Besides fracture, an important structural failure mode revolves around the evolution of
unstable lateral deformations, often characterized as buckling. When time-dependent ma-
terial behavior is involved, such as associated with polymer-based composites, this behavior
depends strongly on the time history of loading and, even more so. on temperature. While
one can always estimate from the relaxation or creep properties of the material lower-
bound load values below which instabilities never arise [Drozdov], such bounds tend to be
so low from a practical point of view that the designer is forced to use these materials
at load levels at which instabilities can evolve eventually. but such that they develop on
a time scale that is large compared to the anticipated life of the structure. Composites
are typically used in their rigid or (near-)glassy state; it is then of interest to examine
the variation in their response history as one deviates from typical low-temperature design
conditions.

The problem of buckling in viscoclastic structures has been considered by several authors.
Most of these deal with response under constant axial or in-plane loads. Closely attuned
to the present objective. Schapery has examined the cyclic loading of viscoelastic columns
under constant temperatwre. We shall emphasize in the present study, as did Schapery,
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realistically wide time ranges of material response rather than idealized behavior. However,
the present effort focuses on the derivation of stability criteria and the effect of time-varying
temperature cycles.

The large time-range for buckling evolution follows from the large range of time-dependence
of polymers, even when they are married to rate-insensitive reinforcements such as graphite
fibers. The “stiffness” of polymers drops by a factor of 102 to 10% with time or temperature
increase as the glass-transition temperature is traversed. Under these circumstances it is
imperative that one appreciate the limitations placed on structures by operation at ele-
vated temperatures. While it is obviously inappropriate to allow the use of these materials
uniformly at or above the glass transition, the possibility exists that they are exposed to
temperature gradients in which part of the material experiences near-transition temper-
atures, or situations may arise when such temperatures are accidentally approached or
exceeded.

With this motivation in mind we examine columns possessing thermorheologically simple
material behavior subjected to two kinds of (axial) loading and thermal exposure: We
consider first the case of a cyclically loaded column under constant as well as cyclically
varying temperature, the latter being in phase with the loading. This problem will be first
considered for the idealized material of a standard linear solid to establish certain limit
behaviors. This simplified-material and exact analysis is then followed by a numerical
evaluation involving realistically wide-spectrum time response following the behavior of
polymethylmethacrylate (PMMA) as a model mnaterial. Along the length of the column
the temperature distribution is presumed constant for all problems considered here.

The next problem concerns the effect of a thermal gradient across the thickness of the
structure. Mimicking steady-state thermal conditions we consider only a linear temper-
ature variation across the column (although a different distribution poses no additional
difficulty in principle). The consequence of this thermal variation is that with time the
material exhibits varyving "stiffness” across the structure, since higher temperatures are
assoclated with faster relaxation or creep, so that the neutral axis (surface) wanders as
time progresses: While being located mitially and also after infinite time at the center, it
is subject to an intermediate excursion towards the cold side.

Problems of time-dependent buckling instability in the absence of temperature gradients
have been considered by other authors. We believe that a fair review of the state of
the art in this respect is presented in the references by Glockner and Szyszkowski (1987)
and Minahen and Knauss (1992). For our present purposes it suffices to state that in
the context of the time-dependent, non-dynamic evolution of instabilities, the criterion
as to when unsafe conditions have been achieved must be established through empirical
arguments; in this regard we follow Minahen and Iknauss (1992) and use the achievement
of a predetermined lateral deflection as the criterion for failure. Also, in view of the results



in this latter reference, namely that considerations of kinematically large deformations
yield virtually identical results as the completely linearized analysis, we restrict ourselves
here also to linear kinematics and material response.

2. General Formulation

Following developments in Minahen and Knauss (1992) we consider an initially (slightly)
deformed column, as shown in figure 1, of in-plane thickness h and unit out-of-plane
thickness. In anticipation of dealing with thermal gradients through the thickness and
the associated motion of the neutral axis, we designate that position with respect to the
center-line as n(t). Let ug(x.t) denote the axial motion of the center-line, a, the (constant)
coeflicient of linear thermal expansion, and TY(-. t) the temperature variation. The strain
1s then
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is the reduced time (difference) based on the time-temperature shift factor ¢(7'). Moment
equilibrium then provides the integro-differential equation
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with w, (@) and w(x.t) denoting, respectively, the small initial imperfection (when needed)
and the additional time-dependent lateral deflection as illustrated in figure 1. After ex-
panding wy(2) and w(a,t) into the Fourier series
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two equations result. one governing the location of the neutral axis
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and the other representing moment equilibrium
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where, in anticipation of dealing only with the fundamental mode (m = 1) [see Minahen
and Knauss (1992)], the subscripts m have been dropped. ! Because the two problems
to be considered subsequently need a somewhat different use of the last two equations, we
shall deal with their applications in the specific contexts.

3. Cyclic Loading

Before dealing with a material possessing realistic time response, we consider first the
case of the standard linear solid with the intention of characterizing the typical aspects
of the problem and to allow for an evaluation of the numerical scheme applied later to
the situation with more realistic properties. Computational solutions require compromises
in the discretization of the integration so that a check on the reliability of the scheme is
at least desirable, if not mandatory, in light of carlier experience in Minahen and Knauss
(1992). We choose a “square wave” loading history because it approximates typical use
conditions better than a sinusoidal history. but also with the expectation that a piece-wise
sequential solution is possible. The results obtained in the sequel for equal on/off times
are readily generalized for unequal on/off ratios with square wave loading. The thermal
excursions are of the same type so that a rise in load is accompanied by a rise in temperature
and unloading is accompanied by a drop in temperature without considerations of thermal
delay transients (c.f. figure 2). In fact, it turns out that any piecewise-constant load
history can be dealt with using the procedure developed below. such that the effects of
loading functions with multiple load levels or discretized approximations of load histories
which do not resemble square waves can be obtained with only slightly more effort.

3.1.1 Standard linear solid; isothermal case

Because in the present case the temperature is uniform throughout the geometry, the
neutral axis remains at the center-line or midswuiface (n = 0). Equation (7) is thus satisfied
identically and. after normalizations in the form of

M= S Pt = (1) E(t)]
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' It was shown in the work of Minahen and Knauss that, generally, of all the possible

deformation modes the first one grows significantly faster than the higher ones. For this
reason the first mode will dominate the deformation evolution.
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the moment equation (8) reduces to

{
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For the standard linear solid, the relaxation behavior is characterized by
EX:
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We effect a solution of (10) for a loading-unloading-loading cycle to show by induction that
a sequential or recursive solution may be obtained. First integrate (10) across the load
jump at ¢ = 0 to obtain

) = pui3

a0
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(12)
and then establish the lateral column motion under time-invariant axial loading. This
result was given in Minahen and IKnauss (1992) for any load level py as shown in figure 3,
which 1s valid for the first loading portion, with the explicit form for this function being
given, for arbitrarily long pulse duration t. by
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We shall refer hereafter to (13) as the deflection function. Integrating (10) also across the
unloading jump at ¢ =, viclds the corresponding deflection decrease

Aa = —polalty) + 3. (15)
To obtain the deflection for the unloaded portion of the cycle we let
p(t) = pglh(t) = h(t —ty)] (16)

m (10), and deduce, with the aid of Laplace transformation and some tedious algebra, that
during the time #y < t < 2f; the lateral midspan deflection is

aun(t) = Crem = (17)
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One follows the same procedure for the time interval 2ty < t < 3t¢ and determines that
during this second loading cyvele.

ap(t)=Cie "+ C, (19)
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i and C are the same as in (14), and Cj is defined in (18). Comparison with (13) shows
that this response can be determined from the deflection under step-loading in equation
(13) through a “time shift” of the form

ap(t)=Cle "0 4 ¢, §= l lngi (21)
i G

which observation is also illustrated in figure 4. Because further stepwise integration be-
comes very cumbersome even for this simple material problem. we deduce by induction
that a sequence for further load cycles may be constructed through successive determina-
tion of the (glassy) jumps at the loading and unloading times plus segments of the loading
and unloading functions, (13) and (17) respectively, such that their magnitudes match the
values at the beginnings or ends of the load cveles. ? In this sense, these two curves
become “master curves” for the deformation during the loaded and unloaded portions of
the cycles.

3.1.2 Long-term stability

This term-by-term construction of the solution becomes tedious and because we are inter-
ested only in the maximum deflection at the end of each cycle we are satisfied with tracing
the history of that particular parameter. To this end. we consider the accumulation of
the deflection over a postulated load cycle by considering the jumps at the loading and
unloading time nty and (n+1)t,, as well as the change during the respective time intervals.
Starting with the deflection ar the end of a loading cycle. a(nt; ). we find the subsequent
(downward) jump

atntdy = aty ) — polalnty ) + 3) (22)

the displacement at the end of the unloaded interval
al(n + 1)t]) = antd Je = AMo (23)

the (upward) jump at the onset of a new loading interval

polaltn + Dty + 3
1 —py

altn + 1f] = al(n+ 1)t + (24)

* This response history has also been computed munerically for comparison purposes
and as a check on the algorithm used later. With 100 or 1000 time steps per cycle it was
found that over the duration of 40 cycles the differences amounted to no more than 0.1%.
The same result prevailed for cycles possessing fractions of the loading/unloading cycle
that differed from the 50/50 example illustrated lere.



and the displacement at the end of the next loading interval
af(n +2)t;] = [al(n + Dtf] — Crje ™ + Cs. (25)
By combining (22) through (25) one finds
Adeyele = al(n 4+ 2)t7] — ainty) (26)$
and therefore
Aocycle = {e”("" Atidte _ Ha(nt, )+ a(0F)(1 = e Ao )eTHE 4 Ch(1 - e_"t") (27)
recalling that o(0% 1 1s given by equation (12).

It is apparent that the character of the accunwlated deflections is determined by the term
multiplying a(nt; ). If this term is negative. successive deflection increments decrease with
time so that the total deflection tends asymprotically to an upper limit. It is negative if
(700X + 1) > 0 which, with (14), mdicates stability if

in which case the maxinnun deflection 15 asyviuptotic (1e.. Adeyce = 0) to
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It is clear that if p > p.. a bounded displacement is not achieved as t — oo; in fact, if
P = Per, the displacement amplitude diverges lincarly with time or number of cycles, while
it grows exponentially if p > p... Hustrations of these three distinct cases are given in
figures 5-7. For these examples the standard hnear solid model used is

(1) = 0.5(1 4 ¢~ W/T20y (30)
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3.1.3 Standard linear solid; in-phase thermal cveling

Because of the piecewise construction of the solution, the extension to thermal variations
is simple, whether that variation is in-phase or out-of-phase. The situation for thermal
cycling which is phase-shifted with respect to the loading by a fixed amount is only slightly
more complicated than the case presented here. while the case of thermal cycling with a
different frequency than the load cycle does not seem to lend itself to any other than a
completely numerical solution. From an engincering point of view, the (approximately)
synchronous load and temperature variation presents the most relevant problem and is the
only one considered here.

We assume that for this simple material model. a time-temperature superposition behavior
such as indicated in figure 8 applies. the two shift factors corresponding to the two tem-
peratures Ty and T, being ¢; = ¢(1}) aud @3 = o(T»). Tle analysis follows identical lines
of reasoning as before. except that t is replaced by the appropriate t/¢. Thus equations
(13) and (17) become. respectively

an(t) = Cl(‘_“'/(‘”)’ + ¢y (31)
and
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We address first the question of stable/unstable deflection growth in the presence of these
temperature variations. Following the same reasoning as that which led to equations (27)
and (28) one finds that (27) is rveplaced by

Aa'cycle = [e_('\x./\/n‘:?*{'ﬂ/(‘u Mo _ 1](\,( nty )+(\(0+ N1—e™ "~ Aty da )e—uto/dn +Cs(1 _e—#to/¢1)

(33)
from which (28) becomes
1)’—'"(T) = T o (34)
ot

For constant temperature, equation (28) is recovered. We note that for the thermal varia-
tions considered here typically 0,/¢s > 1 (and r << 1): as a consequence one has, with
Per given by (28), that po/pi, < 1, with the mmplication that a load level which renders
stable long-term deformations can lead to unstable growtl in the presence of thermal cy-
cling. An example of this situation is demonstrated in figure 9; here, the load level for the
1sothermal case illustrated in figure 5 for the example of <stable deformation growth now
causes unstable growth as the temperature excursions are added. It is important to recog-
nize, however. that it is the evelic nature of the remperature variations that is responsible
for this unstable behavior and not merely a mniform change of the temperature: In the
latter case, one would merely effect an aceeleration of the time scale by which the defor-
mation is achieved. The unstable behavior in the case of the cyclic temperature variation
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results from the fact that during the loading portion of the cycle when the temperature is
higher, deformations grow to a larger extent than they recover during the unloaded portion
when the temperature is low and when the creep response is retarded.

3.1.4 Long-term stability conditions under various load and thermal behavior

As T1 /T increases. 0,/¢y decreases and, upon examining (34), we find that p}. ap-
proaches ro. This can be interpreted as the deflection increasing rapidly during the high-
temperature loaded portions of the cycle hut recovering little during the lower-temperature
unloading segments. If the recovery becomes negligible. the case of no recovery is ap-
proached (i.e. time-invariant loading). so that stability is determined by the generally very
low rubbery buckling load corresponding to . On the other hand, as Ty /T2 decreases,
pr, approaches unity: The retarded deflection during low-temperature loadings is recov-
ered at an accelerated rate during unloading such that deformation does not accumulate,
and only a load equal to the glassy buckling load. i.e.. p = 1. can cause unstable deflection.

We include here also the results for the case where the loading and unloading portions of
a cycle are of different durations t; and 7,

. Foo(l + %%ﬁ')
pT) = 2 T el (35)

DRSS
For constant temperature (¢; = ¢,) and equal loading and unloading durations (¢; = t2),
equation (28) is recovered. Similar to equation (34), limits as t; /¢, approach infinity
or zero give values of p% equal to ro. and unity, respectively, which is interpreted as
representing cases of non-recovering. continuous loading and periodic impulsive loadings
(under exclusion of material mertia).

3.2 Realistic material response tlustratecd by PYNA

Having dealt with the standard linear solid, primarily to establish the long-term stability
boundary for the thermal cyeling situation we turn to consideration of the counterpart
problem but for a material with a realistically wide spectral distribution of relaxation
times. As in Minahen & Knauss (1992) we employ the relaxation characteristics of poly-
methylmethacrylate (PNMA) as an excinplary material. though newer high-temperature
materials will certainly possess more appropriate capabilities. However. we employ the
properties of PNINA because these properties, including the time-temperature trade-off in
the glassy and ncar-glassy domains, are well known: the same cannot be said about most
or all of the polyiners typically used m the manufacture of composite materials. Although
PMMA is an uncrosslinked polvmer and as such does not offer a long-term equilibrium
modulus, we associate suclt a it witls the entanelement plateau. It is not the purpose of
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this section to simply duplicate the earlier analysis for a different material, but to examine
whether representations can be extracted from such an exercise that provides guidance
for understanding qualitatively, and on a more realistic time-scale, the effect which cyclic
loading can have on a thermoviscoelastic structure under constant and synchronous cycli-
cal heating. In particular, we shall be interested in examining how the cyclic problem can
be compared to that employing constant load as a reference, since the latter is readily
computed approximately for realistic material behavior.

We use the relaxation modulus shown in figure 10 which represents the combined mea-
surements by Lu (1992) and McLoughlin and Tobolsky (1952) except that we eliminate
the very long-term flow regime and replace it by “rubbery” equilibrium behavior. 3 We
recognize that this relaxation behavior is not precisely that of thermoplastic-matrix com-
posites applications but we believe it to be representative if we do not limit ourselves to
fiber-dominated lav-up configurations: in any case, this statement appears to us reason-
able because we shall present all data and interpretations normalized by the short-time or
glassy modulus. The governing integral equation (3) is evaluated numerically.

While we shall thus substitute for the relaxation or creep characteristics of a composite
solid that of PMAIA. with modifications as discussed above, it is imprudent to assess
the behavior of carbon-reinforced polymers using the thermal expansion characteristics
of PMMA. The reason is that the coefficient of thermal expansion of PMMA is about
two orders of magnitudes larger than that of typical fiber-reinforced materials in the fiber
direction, though. transverse to the latter, the expansion may also be large by comparison
[see e.g., Schapery (1991)]. In order to deduce engineering-relevant information from these
computations it is therefore reasonable to choose an appropriately small coefficient of
axial thermal expansion and use, therefore, the “text value” of a, = 3 x 107%/°C [Tsai

and Hahn].

A remark is in order on the eriterion nsed to establish failure by buckling. Following
Minahen and IKnauss (1992). we use the attainment of a chosen deflection as the failure
criterion. The tinme to failure is then the time to reach this deflection under any loading
conditions. For demoustrative purposes. we may think of such a value as two or three
multiples of the column thickness: we use a factor of 2.4 in this presentation.

Before turning to a comparison of the effect of a thermal gradient on the time scale of
failure, we illustrate first four cases of column deflection history under cyclic loading for
“realistic” material properties. namely subcritical, critical, and supercritical behavior, as
well as a case for how the subcritical case can become supercritical (unstable) if ther-
mal cveling accompanios loading. These situations are illustrated in figure 11 where the

3 For computational purposes we represent the relaxation function by a series of expo-
nentials (Prony-Dirichlet series) of 30 ters.
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shaded area between each two curves represents the range of deformations as the column
midpoint displacement increases under cyclic loading. The fourth figure in this group
applies to the case of a load which, in the constant temperature case, is subcritical but
which becomes supercritical wheu the temperature accompanying the load cycle increases
load-synchronously by 10°C, similar to figure 9 for the standard linear solid. We note first
that for material behavior with a large range of relaxation times it is no longer reasonably
possible to computationally establish whether the deflection tends toward a limit value
for very long (infinite) times. At best one observes that for supercritical loading the rate
of growth increases with time, while for the critical and subecritical loading the converse
seems to hold. This behavior follows from the previously developed long-term stability
boundaries which are also valid for a material with realistic relaxation behavior.

It is apparent that under isothermal conditions any cyclic loading with maximal load
amplitude py will lead to failure after longer times than for the case when the same load
po acts invariantly with time: in fact, the same load which leads to eventual failure when
constant may result in a long-term stable deflection when applied cyclically. On the other
hand, it is of interest to examine the relative behavior between the two cases when the
load in each case is normalized by its respective long-term stability boundary in such a
way that the respective loads are related by
Pu Pu

— = : (36)

*
Perd consi Per cye

because this comparison relates synchronous thermal and cyelic loadings to isothermal,
time-invariant loads. the latter being readily estimable. As shown in figures 12-14, a very
close agreement between the two responses is apparent. This result indicates that, while
the realistic material response to cyclic loading may be analytically difficult and compu-
tationally time-consunming, the more-easily computed constant-load case can be used, by
employing the above equivalence relation, to evaluate long-term behavior. It is worth not-
ing that this equivalence cannot be used in comparing time-invariant and cyclic behavior
in the case of the standard linear solid. Figures 15-17 clearly reveal this lack of corre-
spondence. Although in the eritical loading case the constant-load deflection follows the
average deflection under cvelic load. the other two cases show divergence. The lack of a
realistic range of relaxation times does not allow the above-determined equivalence to be
applied for the simple material model [Schapery (1962)).

4. Effect of a Thermal Gradient

We next consider a column loaded axially at the center-line by a step load of magnitude
P but in the presence of a transverse thermal gradient. Along the length of the column
the temperature distribution is invariant. For these considerations we do not include an
mtrinsic initial mmperfection. because the thermal gradient induces a lateral, stress-free
deflection, whicli we designate by wegle). Constder the coefficient of thermal expansion «
to be a constant in the temperature range of interest,
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Because of the thermoviscoelastic material hehavior and the thermal gradient the effective
properties vary across the thickness so that the neutral axis, located a distance n(t) from
the center-line, moves with time as dictated by (7) and is determined (numerically) by

S35 LBl o)~ €16 0 R (2 (6] de da
7)(f) = 2 I y — (37)
eI B ) - €6 ) [ e)] dedz

However, it is first necessary to find duy /0.

Considering the purely axial compression of the column, force equilibrium requires
/\ oz t)dd =" (38)
or L
/ | B - etes) & [%—m} dé d= = P (39)

Discretization of this equation allows determination of dug/da by iteration and via the
Newton-Raphson method. Once dug/d% is known. one solves (37) for n(t). Finally, know-
ing n(t), one solves (8) for the displacement 4(t) by discretization and the Newton-Raphson
method.

For the case of a transversely linear temperature gradient.
T(z)=az 4+ (40)

and employing the Prony-Dirichlet series representation

E(t)=Ex + ) _ Ege™™! (41)

k=1

along with the time-temperature superposition factor o(T). the relaxation modulus be-
comes, for any value of .

E(:;t)=Ex+ Y Epe”smiom! (42)

k=1

or

Eiz.t) = ZE,‘.(‘_»'-[')‘\": o8 (43)

h=0
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where E, is the 0'"-order coefficient. At ¢t = 0%, we define

E, = E(:.0Y) = Ex. + Y _ Ex. (44)
k=1

4.1 Analytical preliminarics

The thermal gradient introduces an initial curvature which can be computed as for an
elastic solid if one assumes that the cocfficients of thermal expansion are time-insensitive.
The analysis follows essentially that outlined in Timoshenko and Goodier (1987) and details
are also presented in [Tsuyuki and Knauss (1992)]. The result of that analysis is, with
coordinate definition as given in figure 18,

1 AN
wy(a) = — 50 [(1 — —;) — I] (45)

Express wy mn a Fourier series

l(‘[)(ﬂ.') = l; B,” Sill "77;:"1. (46)
so that .
2 S AN T
B”, = —7 /l; 5(_11.(1‘ |:<I - 5) - -Ijl sin 777;1 dz (47)
B = {-:%;#') if m odd; (48)
0 if m even .
And thus
o al?
B, = = (49)
or, more generally.
D,
BIII = '”T (50)

Thus a one-term approximation with By alone is not unrcasonable for present purposes.
In fact, in view of [Sechler] this choice would render the estinates of instability occurrence
conservative.

In conformity with the step loading one finds [from (39)] that, immediately after load
application (¢t = 0%).

/ E, 2 0 yas = p (51)

_u O
g
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or

_Ouy, ., 1P
€g = Or (0 ) = Eg h (52)
and similarly for (7) and (8) that
nyg = 'Nv(()+) =0 (53)
and B
A0y = —— (54)

5 (3) -1

For the case that the column reaches a stable equilibrium at large times, one determines
the long-term result by observing that E(z.t) — E. as t — oo. Then (39) becomes

AP _
! 0 0”\‘;
Ex /ma—{a—< >} ddz=P (55)
or ) L
e I
Coc = Or lex Eo h' (56)
Similarly, (37) leads to
Noe = n{x) =0 (57)

and finally, (8) gives the complement to (54) as

Aloc) = (58)

We next evaluate the stability regimes of the column. following Minahen and Knauss
(1992). We rewrite (56) and (58) as

PD T2
oty = O — —
A0 = 5 Pe = ng(l) (59)
and I )
7 < Ty
Ax) =gy o P s Exl(l) . (60)

P? and P2 are the Euler huckling loads based on the instantaneous (glassy) and long-term
(rubbery) moduli, respectively, and if P approaches these values, the glassy and long-term
responses, respectively, become unbounded. This establishes three stability regimes. If the
load is less than P25 (G0). the deflection eventually tends to the value given by (58). If the
load exceeds P (59). the column buckles instairancously. If the load level falls between

[
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these limits, the deflection grows gradually in an unbounded manner. This is illustrated
in figure 18, where the column response of a load at 1% below PZ° is illustrated; the
“supercritical” load is one percent above that critical load.

4.2 Time-dependent failure---design life

Once the column has (we assume instantly) attained the initial imperfection given by
equations 46 and 48, the subsequent cohunn behavior is o direct response to the axial load;
however, in contrast to the case of uniform temperature. different layers of the material
through the thickness creep/relax at different rates in dependence on the local temperature.
In view of the previous experience with buckling solutions involving viscoelastic material
behavior there is little expectation that this problem can be solved in “closed form” and
we therefore address the solution numerically.

Before delineating that development we commment on the definition of “failure” in the
present context. As observed in Minahen and Kuauss (1992), the failure of a viscoelastic
column approaches instability over poteutially very long time scales. While any load level
above that corresponding to thie relaxation modulus will result in loss of stability at infinite
time, 1t may require potentially very long tinies to attain deflections that are unacceptable
from an engineering point of view. We thus define a ~design-life” which is that time
required for the columm to achieve a prescribed “eritical” displacement. As in previous
worl we arbitrarily choose this deflection as about 2.5 times the column thickness. * With
this concept in mind we model a column 500 mm in length and 6.35 mm thick having the
thermoviscoelastic properties of PMMA as discussed above, but the thermal expansion
characteristics of a carbou-epoxy composite a = 3 x 107°/°C as reported in [Tsai and

Hahn].

The evaluation of equations (S). (37). and (39, 15 accomplished numerically under the
assumption that a oue-term expansion of (5) with (6.46) is sufficient for our purposes. An
outline of the numerical procedure is ssunmarized in the Appendix.

For reference purposes it is prudent to record the lifetimes at a constant temperature
puri
of 100°C as shown in figure 10 [Minahen and Knauss (1992)]: As demonstrated in that
reference, the relaxation modulus provides a good engineering estimate for this relation if
proper account is taken of a horizontal shift along the log-time axis of approximately one
decade, which is, however, a function of the iitial column imperfection.
) !

Because in applications of high-speed transports one surface of the structure is likely to be

1 Tt has been shown in Minalien and Kuauss (1992) that for this deflection magnitude
the current linearized formulation is adequate aud that the kinematically non-linear for-
mulation is not required. The value 2.5 1s. i reality. a value of 2.4 in the earlier work
which incorporated factors arising out of a dimensional conversion in connection with the
experimental work reported there.
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maintained at a constant temperature. we consider here also the case when one side of the
column is kept at 30°C; the other side is exposed to a temperature varying between this
value and 120°C, so that one suwrface experiences the extreme conditions of being above the
glass transition temperature. The results are delineated in figure 20. It is clear that with
increasing thermal gradient across the columu its life decreases rapidly; this is the result
of both the increase in the bowing induced by the thermal gradient (“initial imperfec-
tion”) and the thermoviscoclastic acceleration associated with the increased temperature.
However, while uniformly increasing temperatures allow a time-temperature trade-off in
the form of a simple shifting of the failwe curves along the logarithmic time axis, that is
no longer even approximately the case. In fact. it is difficult to make the case that the
isothermal response provides a generally conscrvative estimate of the failure times.

Observing the effect of heating one side of the column to above the glass transition tem-
perature while keeping the other one at 30°C we see that the life of the column has been
decreased by about five orders of magnitude relative to the isothermal 30°C case. This
result 1s readily wnderstood if one recognizes that in addition to the large time-accelerating
effect of high temperatures below the glass transition the stiffness of the polymer has vir-
tually disappeared for temperatures above 110°C so that the column has effectively “lost
thickness.”

5. Conclusion

The evolution of unstable lateral deformations in a thermoviscoelastic column has been in-
vestigated under the conditions of cyclic loading with synchronous temperature excursions,
as well as time-invariant loading while subject 1o a transverse temperature gradient. Sta-
bility analysis in the cyelie loading case indicates that, while such loading under isothermal
conditions leads to stable long-term deflections at loads greater than the rubbery buck-
ling load (and therefore the long-terun stabilite limit for constant loading), the addition
of temperature cycling can induce unstable loug-term deflection in cases with otherwise
subcritical load levels. even with relatively small temperature changes. Evaluation of the
behavior of a material with a realistic time-response spectrum as represented by that of
PMMA leads to the conclusion that the envelope of deflections of a realistic material
under cyclic loading can be approximated by the response to constant loading when an
appropriate equivalent load normaliziation 1s nsed.

While it appears difficult ro vecognize a general sealing process for the time-dependent
response under various therimal gradicurs. it is possible to give some general guidelines or
rough estimates for hounding failure response. To see this. we plot in figure 21 the responses
for the different gradients from figure 20, bur tine-shifted by the average temperature
across the column. The solid curve in that figure represents the failure time for the column
at the uniform reference temperature (30°C. and in shape equal to the relaxation modulus
of figure 10). Thus, if the gradients were small. all curves would {nearly) collapse into the
single (solid) curve. One notes clearly that for loads above 90% of the ~glassy buckling

1



load,” all failures at clevated temperatures oceur sooner by several orders of magnitude
than at a reference state corresponding to the average temperature. Thus, the use of
an average temperature for estimating the time response in the presence of temperature
gradients provides a massivly non-conscrvative failure time. > On the other hand, it is
also clear that assuming the failure behavior for a structure exposed to the maximum
temperature provides an extremely conservative estimate of its failure response, but one
that may be useful for initial design estimation.

This study has heen conducted onamacroscopic level, hur a last word concerning compar-
ison to the local fiber buckling case is in order. Indeed the results should be applicable in
some sense to localized phenomena, for. while the boundary conditions differ, the essential
aspects of the time-dependence and subsequent response do not. It should be noted that
the “initial imperfection”™ used in the gradient problem is entirely due to the thermoelastic
expansion of the material. and. assuming a positive coefficient. this will always result in
the outside of the “bowing™ being the hot side of the column. and the hot (accelerated
time-response) side therefore tending to be in tension. However. if a specific case arises
where the heating is conpled with some transverse loading such that this tendency is over-
come and the bowing reverses. ending up with the hot side in compression, the local fiber
buckling/crimping hecomes o mnch more eritical issue. due to the decreasing local stiff-
ness. In the majority of cases likely to he cnconntered in real-life application. however, the
“hot-side-out™ assuniption is adequate.

Acknowledgments: The authors would like to acknowledge the support of the National
Aeronautics and Space Administration through grant number NSG 1483 with Dr. James
Starnes as the teclhnical officer.

7 The fact that this trend appears to reverse helow 90% is not really correct since these
curves have all heen shifted along the time axis in accordance with the time-temperature
reduction according to the average temperature.
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Appendix: Numerical Procedure

The results in section 4.2 arce obtained by solving equation (8) for A(t). (8), however,
contains n(t), which is given by equation (37). (37) in turn contains Oug/dz, which must
be determined from cquation (39). A sequence thus evolves for the determination of A(t):
for each time step, (39) is solved for uy /O, which allows n(t) to be determined from (37).
(8) can then be solved for 4(t). This sequence is carried out in a computer program which,
after initializing material constants (Prony terins and WLE constants) and geometric and
loading parameters. executes a time loop. The time loop contains three sections which at
each time step solve for Quy/0x, n(t), and A(t). respectively.

While (37) requires only siimple munerical integration, (8) and (39) are implicit equations
which are solved using o Newton-Raphson approach. (Note that a similar routine is ex-
ecuted for section 3.2. except normalizations.}) A special recursive relation is defined in
order to facilitate time-stepping without having to preserve previous values of parameters
for the convolution. The same methodology is used to solve both (8) and (39); here we only
give the details for the solution of (8). trusting that the analogy for (39) will be apparent
[note that the results of section 3.2 are obtained by an essentially identical procedure,
except for the use of the normalizations given in (9)]. We recast (8) in Riemann form and
define the function

Fit) = (%) / - - n(t)]{[: — n(0F)]4(0%)E(, )

h
]

ol 0
+ /+E(:.t—£)0—£{[s~n<£)H(<)}df}dz

—P[A(t) + B].

which for F(t) = 0 solves (8). This function ix discretized at a sequence of distinct times
t, and with respect to o as

)

o
- (7) > [z - u(_f,._)]{,-_l;l((]Jr)E(:,.t,.)

=1

+ Z E(zit, — 1, )A{[:i — 75\:")]‘4(“‘)} Af} Az

1=

~- Pt )+ B).



Using (15) for E(z,t), there follows

F. = (;)2 (i{:,— - u(t,.)]{:,;—l(()*“) i: EL.e*ﬁf;_)r'
» = k=0
+ii£k‘- S0 A (5 — j)]-‘l(lfj)}}AZ

J=1 k=0

~P[A(t,) + D).

Define

= 3 Eve T TS0 (5 = n(t)) ()

=1
so that

-}

=) S
+ZG"}A-—PH ) + B).

k=0

Upon isolating the term for ;= from the series for G¥* one finds

G,Af" :E‘A.vﬁﬁ_\lﬁ{[:, = n{t ) A}

r—1
+ Z Eie @ =H“"°"‘”A{[:, —n(t; )]-—l(l‘j)}
=1

=Epe” ST Az - n(t)) A1)

r—1
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and the su is now cqual to the previous value of GA . G ?| so that we may write

This recursive relation allows solution of the equation at successive time steps without
having to retaiu solutions for all prior rimes. We can also calculate
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Then, using the Newton-Raphson method, where 4’ is the current estimate for A and A"
is the updated value,

A" =44 A4
F (A" =F(4"+ A4
OF(A')

=F.(A")+ 94

AAd+

We wish to find F,. = 0. so

Therefore we approximate:



Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Viscoelastic column under axial loading and reference frame
definition.

Synchronous load and thermal history.

Response curve for growth of buckling deflection under constant
load and isothermal conditions [see Minahen and Knauss].

Hlustration of piece wise construction of response under cyclic
"square” loading.

Response of column (standard linear solid) under isothermal, cyclic
loading for p < pcr

Response of column (standard linear solid) under isothermal, cyclic
loading for p = pcr

Response of column (standard linear solid) under isothermal, cyclic
loading for p > pcr

Time-temperature shift factor for PMMA, also used for exemplary
standard linear solid.

Response of the standard linear solid for the same (stable) load level

as in Figure 5, but now with a load-synchronous thermal excursion
added.

Relaxation Modulus for PMMA. The shape of this curve is the same
as that for the time to failure of an isothermal column under constant
load [See Minahen and Knauss. The upper portion of this curve is
also the same as the solid curves in figures 20 and 21].

Response characteristics of a column possessing PMMA properties
under isothermal conditions and with load-synchronous heating.

Comparison of response under steady load (dashed line,

P=po(1+r)/2)) and cyclical loading (solid curve, P=Te) according
to equation 36 for PMMA properties and p < p¢r

Comparison of response under steady load (dashed line,

P=Po(1+r~)/2)) and cyclical loading (solid curve, P=r) according to
equation 36 for PMMA properties and p = p¢r



Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Comparison of response under steady load (dashed line,
P=Po(1+r)/2)) and cyclical loading (solid curve, p=r..) according to
equation 36 for PMMA properties and p > p¢r

Comparison of response under steady load (solid line) and cyclical
loading (dashed curve) according to equation 36 for the standard
linear solid and p < pcr

Comparison of response under steady load (solid line) and cyclical
loading (dashed curve) according to equation 36 for the standard
linear solid and p = pcr

Comparison of response under steady load (solid line) and cyclical
loading (dashed curve) according to equation 36 for the standard
linear solid and p > p¢r

Configuration of the column under a thermal gradient.

Example of critical loading. The solid and dashed curves represent
responses of a standard linear solid to loads which are, respectively,
1% above and below the long term critical value.

Failure time (= design life) versus normalized column load P/Eg for
various thermal gradients across the column. One surface of the
column is held at 300C while the other is kept at a higher temperature
by the amounts indicated. Note that the solid curve has the shape of
the upper portion of the curve in Figure 10.

The responses of figure 20 plotted with the time axis adjusted by
time-temperature superposition with respect to the average column
temperature. In this plot small or zero gradients would make all
curves coincide (approximately) with the solid curve.



igure 1: Viscoelastic Column Under End Load
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Figure 4: Illustration of the Piecewise Procedure
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Figure 18 : Elastic Column Under Thermal Gradient
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